Introducing “Bee Bytes”!

BeeByteLogo
Welcome to Bee Bytes, a #scicomm project to introduce bees to the public!

What is Bee Bytes?

Bee Bytes will be a weekly to biweekly series on my blog, where I write “bite-sized” posts about an invasive or native bee species in the United States, describing its distribution, taxonomic relationship, and a few fun facts in brief! Each post will be 256 words or less – the number of unique characters you can represent with just one ‘byte’ (and exactly as long as this post). The end will have extra resources, in case you want to look for more about your favorite bees.

I don’t get it, why bytes?

A byte is used to encode a single text-character in a computer; my ‘bee bytes’ will be used to encode a single bee in your memory!

Where can I find these bytes?

For now, get your Bee Bytes fix here on my blog; in the future, I’m hoping to make a ‘trading card style’ website where you can search the deck for your favorite bees. That can be an after-quals project.

How long will you be doing Bee Bytes?

With 4000+ species in the United States, I can write for the next 77 years or so before I cover every species we’ve got! By that time, we’ll have so much new information I might even have to start over!

4000 species? Aren’t you byte-ing off more than you can chew?

Listen, bugger – you can buzz right off with that negativity.

Sorry.

Why?

Check out this link for the impetus behind ‘Bee Bytes’.

Continue Reading

Year One Celebration

Photo credit: Steve Buchmann (http://stephenbuchmann.com/)
Photo credit: Steve Buchmann (http://stephenbuchmann.com/)

Year one of my PhD program is officially over and, with the advent of the fall semester, I would like to celebrate the things that I’ve achieved in just one year. In some ways, this blog has functioned as my ‘praise journal’ – the technique I wrote about in this blog post about overcoming impostor syndrome. This past year has been very hard – a PhD is about growing as a scientist, which (it turns out) means more than just learning science; it means learning to think and work differently. This growing process is hard – my perfectionism, anxiety, and workaholism have been dangerous company to keep as my PhD has progressed. But each graduate student has their own areas of personal growth where they will be challenged during their graduate career.

This past year I’ve accomplished the following scientific things:

  1. Taken six classes, and many online workshops
  2. Taught two classes
  3. Gathered brain data on over 160 specimen and counting, including spiders, ants, termites, and wasps – and helped finish three full projects for my lab, one of which is already published
  4. Gathered microbial community data for another lab that will result in an eventual publication for them
  5. Started working on an additional four projects for my lab, with exciting results incoming!
  6. Made a poster on ant pesticides with my STAR mentee!
  7. Began developing a pretty fantastic thesis proposal, if I do say so myself #justbeethings
  8. Co-author on my first published paper (this one was big enough that it deserved to be mentioned twice)
  9. Presented at two scientific conferences
  10. Received two travel awards
  11. Attended the Bee Course, 2017!
  12. Mentored over 400 student hours between six different undergraduate students
  13. Was the only Biology student to win the College of the Arts and Sciences TA Excellence Award
  14. Elected to several biology leadership roles and accepted for science outreach positions
  15. Had my #scicomm accepted for publication at Buzz Hoot Roar, The Female Scientist, and more

All in all, it was a scientifically successful first year, all while I dealt with a lot of personal adjustments and challenges. What started out slow and scary, has built to something incredible – it’s easy to see, when it’s all in one list, how much there is to be proud of from this first twelve months of my journey. Here’s to many, but not too many, more!

Continue Reading

The Evidence that Scientists Don’t Believe

Scientists are big on evidence; after all, we’ve each been trained (in our own highly specialized field) to accept nothing unless evidence shows – beyond a very high statistical cut off – that the particular thing in question is likely a real phenomena. And even then, we are trained to say that the evidence ‘supports’ that particular phenomena, not that it ‘proves’ it. All of this shows that we should have a very high threshold for skepticism, and a huge disapproval of ‘anecdata’ – that is, the ‘data’ of our personal experiences, not supported by evidence.

Scientists abhor when the general population ignores the overwhelming evidence on the safety and importance of vaccinations, the reality of human-caused climate change, or the mechanisms of evolution. But when it comes to research on education, evidence shows that scientists are the new climate-deniers (Terry McGlynn put in nicely here). In fact, even when scientists want to be better instructors, they resort to anecdata (e.g. “I saw my students become more engaged in the classroom when I switched to case studies”) and not the extensive literature that may document a similar trend (Andrews and Lemons 2015).

In my mind, it isn’t a tragedy when instructors are choosing to switch to evidence-supported, effective teaching methods based on personal experiences. This is roughly the equivalent of someone saying, “In my experience, the weather has gotten hotter every year that this coal plant has been in operation near my house – so I’m going to switch entirely to renewables.” Sure, you wish they looked at the papers showing the real evidence about climate change – but the net outcome of this scenario is uninformed, yet ultimately positive, action being taken.

But it is a tragedy when instructors are using anecdata to switch to practices that are not supported by the evidence, wasting valuable time and educational resources, and when instructors use personal experience to justify sticking with lecturing and other methods that have been shown to be ineffective at increasing student learning when compared with active learning strategies (Freeman et al 2014). It is not a tragedy for the instructors, but for the students – who are 1.5x more likely to fail when teachers use traditional lecture styles as compared to active learning.

Oftentimes, scientists are compelled to ignore the education literature because it seems ‘unscientific’ – there are too many uncontrolled elements, or the research uses qualitative or observational data instead of quantitative data (which wouldn’t fly in the peer-reviewed journals many of these scientists are publishing in). In reality, we’ve each simply gotten comfortable with the specific issues that plague our fields and methods – no biology or even physics study is perfectly controlled (though math might be able to make some claims towards perfection), yet we still recognize the validity of a statistically significant result! The goal of experimentation is never perfection – otherwise we would never be able to say anything conclusive about our world.

In regard to qualitative data, many of the first naturalists simply sat and observed their quarry – yet still came up with important, reproducible results about the natural world that later scientists relied on and replicated when better or different techniques became available. Just like in chemistry, biology, or physics, it’s the accumulated results of multiple independent and peer-reviewed education studies that should be considered as a guiding light, not any single piece of work or classroom; the strength of qualitative data grows through repeated observation, just as that of quantitative data does. And oh boy is there a large body of evidence for many active learning strategies!

An additional problem is that some ‘revolutionary’ new teaching practices that are promoted are not necessarily evidence-driven, leading to well-meaning and hard-working teachers getting duped into using unsupported teaching practices. Ever heard of ‘learning styles’ or been asked some variation of: ‘are you a visual, verbal, or kinetic learner?’ I’m guessing most of us have.

Yet there’s not much (any?) evidence out there showing that matching your ‘presentation style’ to a student’s self-reported ‘learning style’ actually increases student learning. Despite the lack of evidence (reviewed nicely by Pashler et al 2008), learning style curriculum and self-assessments are all over the educational sphere, and have invaded the ‘mainstream’ understanding of how people learn – to the point that learning styles are accepted as evidence-based, even when they are not. In fact, approaching people with the idea that learning styles are not supported by evidence is often met with shock – and denial. Sentences like ‘Well, I just know I’m a visual learner’ abound – for many of the reasons pointed out in the Pashler et al 2008 report. Tons of academic resources are being wasted as money and time are being poured into learning styles classroom work – and none of it is effective or supported by evidence.

Me, teaching as a grad student, getting ready for some active learning wisdom to be imparted.
Me, teaching as a grad student, getting ready for some active learning wisdom to be imparted.

So what are some evidence-based teaching approaches? Active learning strategies like Peer-Led-Team-Learning, Problem-Based Learning, Process-Oriented-Guided-Inquiry Learning, and more have been shown in a variety of contexts to improve student learning outcomes among other metrics (Eberlein et al 2008). Despite the fact that we’ve known about these techniques for centuries, we’re still waiting for the denial-ism to quit and for scientists to start implementing these evidence-based teaching techniques in their classrooms. In future posts, I’ll talk more about these techniques, the research behind them, how to use them, and how to start using them (yes, these are different).

It’s time to put our scientific mindset to task, stop the anecdata, and focus on the evidence: evidence based active learning is the future of STEM education.

References:

Andrews T, Lemon P (2015). It’s Personal: Biology Instructors Prioritize Personal Evidence over Empirical Evidence in Teaching Decisions. CBE – Life Sciences Education, 14, 1-18.

Eberlein T, Kampmeier J, Minderhout V, Moog R, Platt T, Varma-Nelson P, White H (2008). Pedagogies of Engagement in Science: Comparison of PBL, POGIL, and PLTL. Biochemistry and Molecular Biology Education, 36, 262-73.

Freeman S, Eddy SL, McDonough M, Smith MK, Okoroafor N, Jordt H, Wenderoth MP (2014). Active learning increases student performance in science, engineering, and mathematics. PNAS, 111, 8410-5.

Pashler H, McDaniel M, Rohrer D, Bjork R (2008). Learning Styles: Concepts and Evidence. Pyschological Science in the Public Interest, 9, 105-19.

Continue Reading

Biopoetics: Comma after Late Budbreak…

Image from page 765 of "Appendix to the Journals of the Senate and Assembly of the ... session of the Legislature of the State of California" (1853) - No known copyright restrictions
Image from page 765 of “Appendix to the Journals of the Senate and Assembly of the … session of the Legislature of the State of California” (1853) – No known copyright restrictions

A big thank you to The Trumpeter for publishing this poem, Comma after Late Budbreak: Defoliation by an Invasive Pear, here (listen to it here)!

This is another poem in my sugar maple cycle, which deals with a pest – pear thrips – which can pose a real threat to sugar maple trees as they leave ‘Budbreak‘. Pear thrips (Taeniothrips inconsequens) are very tiny, around 1.5 mm, thin, striped brown bugs with a hairy fringe that are invasive to the United States and damage the leaves of sugar maple (and other) trees. Sugar maples are noted to be attacked most frequently and severely. Pear thrips were introduced to the US sometime before 1904, when they were documented in CA, and defoliated 1.3 million acres in PA during 1988 alone.

Adult female thrips live in the soil during the winter before emerging as air temperatures warm during early spring; they fly through the air to find suitable hosts, then crawl through the scales of the trees’ buds to lay eggs and feed on the delicate leaf/flower tissues underneath. Adults feeding on this delicate tissue, and possibly also oviposition of eggs itself, can cause heavy damage where leaves are crinkled, yellowed, and/or 1/4 normal size – trees can sometimes look yellow or thin from quite a distance. Reduction of foliage can cause an individual tree to produce less seeds, likely since they have less photosynthetic capacity and produce less sugars.

After the buds break, releasing their damaged leaves, small white eggs can sometimes still be seen clinging to the veins of the leaves where larvae will hatch and feed on the fluid from the leaves themselves. Adults die relatively shortly after oviposition, with few surviving past late May; the larvae stick around to feed before taking to the soil for another cycle.

Budbreak and pear thrip emergence from the soil occur nearly simultaneously; thus the timing actually plays a big role in how much damage the thrips can do to their hosts. Should buds break and leaves expand prior to thrips emerging from the soil, the thrips are highly susceptible to predators and the environment and will have a far smaller effect on tree health. However, should buds begin to leave dormancy and swell later than thrips emerge from the soil, the thrips have a dry, safe environment to feed and lay eggs inside the bud, wrecking havoc on the slowly developing leaves within; thus a late budbreak can spell disaster for maple trees in the northeast.

Continue Reading

Biopoetics: Acerum on Fomalhaut b

Public domain/Denny David, link through photo
Public domain/Denny David, link through photo

A big thank you to The Trumpeter for publishing this poem here (listen to it here).

This biopoetics may be a bit of a cop-out but there is a reason for it – promise!

This poem was the beginning. My first – ever – poem that combined science and poetry. What you see in this poem is something that desperately needs unpacking; something beautiful on its own, which gains additional power upon explanation. So why won’t I explain it?

I have. Acerum on Fomalhaut b was the inspiration for the following poems (with their biopoetics linked if available):

Acer saccharum

Dicotyledons

Deepnight

Sapriver

Budbreak

Windborne

Sunleaves

I: Seedling

I: Matured

And several additional poems in the sugar maple cycle, which were in turn inspired by the poems listed above.

It is important to note that I have been working on unpacking this poem since December of 2015, but have still only unpacked half of the poem in total. The left side of the poem tells the story of a bright planet in our screaming universe – Fomalhaut b.  This side weaves in and out of the right, the story of Acer saccharum – or the sugar maple tree. It is the sugar maple side of the story that I have had the chance to unpack and tell so far in my two years of working on this project. Admittedly, I may have gotten a bit stuck on the sugar maples…oops!

I hope that, reading this poem, you can appreciate the two threads as they come in and out of focus – the way our teeming, lively trees on earth can both parallel and juxtapose the vast emptiness of our universe, the way a planet, a star, or a tree is born, lives, or dies. And I hope the ever-growing web of poems that surrounds this smattering of words helps you appreciate those patterns in a poetic, and a scientific, way.

Continue Reading

Biopoetics: Deepnight

A big thank you to Palaver magazine for publishing this poem; you can read it here (pg 75) or hear me read it aloud here.

Photo by Stanley Zimny entitled ‘Sunny Winter Tree’ (Attribution-NonCommercial 2.0 Generic), link through photo
Photo by Stanley Zimny entitled ‘Sunny Winter Tree’ (Attribution-NonCommercial 2.0 Generic), link through photo

Deepnight is another poem in my sugar maple cycle; when I first began working on this poetry series and thinking about trees more deeply, I came to the conclusion that trees wouldn’t obey our seasons. So I created what I thought were important ‘seasons’ for trees: Sunleaves, Deepnight, Sapriver, Budbreak, and Windborne. Deepnight occurs after the trees shed all their leaves and enter a state of dormancy until the days become longer and warmer again.

While Sunleaves tells the story of the leaves on the trees changing color in fall, Deepnight tells of the tree settling into a period of barrenness, of the very beginning of winter. The story is told from the perspective of the leaves themselves: the sense of betrayal as they are tossed away so the tree can conserve resources (and not worry about the fragility of the leaves themselves) during the winter.

As the days gets shorter, less chlorophyll is produced in the leaves, allowing for the other colorful chemicals that were already there, such as anthocyanin (red) and carotenoids (orange), to be ‘uncovered’. The sap sent to the leaves to grow and sustain them is now instead sent to the roots, stored there throughout the winter to be used to power the next generation of leaves after Deepnight is over. Water concentration in the cells of the tree is reduced (increasing the concentration of solutes like glucose), in order to lower the temperature at which the cells will freeze through disrupting ice crystal formation.

Layers of abscission cells (often with modified, weaker cell walls) are formed where the leaf meets the branch of the tree; this means that, eventually, one hard gust of wind will knock the leaf off the branch.  Abscisic acid plays a role in endodormancy (a non-growing phase for a plant caused by conditions like cold, lack of light, etc) – though that role is currently poorly understood (originally, it was believed to play a role in abscission but scientists now believe it has some other function).

Some parts of the leaf will be actively broken down as the leaf slowly dies, its grasp on the tree being weakened by the abscission cells, until the tree is finally rid of all the leaves and enters dormancy, waiting for the days to grow longer again.

Continue Reading

2017 Goals – Mid-Year Evaluation

18809657_680799998776154_2728701063698841600_n
Can you spot me collecting insects at Lacawac Sanctuary?

Since we’re halfway through the year (or thereabouts) I’d like to take some time to reflect on those goals I set for 2017, all the way back in January (how has it been six months already??). It’s important to check in on your big goals every once in a while, before it’s too late to make changes in order to achieve them.

In my goal-setting post I set the following list up for 2017… we’ll go point by point:

    1. Finish gathering data for the Eciton army ant project – this goal is, as I talked about last month, on it’s way to completion. With 6 undergraduates and myself all plugging away at this over the next three months, I have no doubt we’ll ring in September will all of the data.
    2. Maintain an active blog presence here, with at least one post a week – I think, most weeks, I’ve managed to get at least one post out and I’ve maintained my monthly biopoetics, of which I’m most proud. It’s been a little hard recently – with finals and some big personal stuff coming up – but I have managed to keep up this blog (for my betterment, if not yours).
    3. Develop my board game idea into a reality – Honestly, I forgot this was even something I was looking to do (#mybad). I’ve got a really interesting board game idea in my head about my brother’s business, but I’ve still yet to take the time to work on this – prioritizing other creative projects, like novel writing, over this. Maybe this means this project should be moved to the back burner?
    4. Publish three more poems – I’ve accomplished this one several times over! So far I’ve had 14 poems published this year – though I have been really lax in writing or submitting my work to new places. Most of these publications are roll-over from my work in the summer/fall of 2016.
    5. Have my committee and thesis ideas outlined for my PhD – This is actually pretty in-progress. I’ve got some cool ideas about bee dimorphisms (both morphologically and behaviorally!) and I think my attendance at the Bee Course 2017 this year (at the Southwestern Research Station in AZ) will really help flesh them out.

In addition to these goals, I want to remind myself of some additional things I’m working towards accomplishing this year that I should be proud of, including:

  1. Adding 20,000 words to one of my novels
  2. Generating data for the next NSF proposal on spider brains
  3. Working on getting a house (crazy right?)
  4. Taking additional classwork in the form of PROFESS courses
  5. Gathering data on Synoeca wasp dimorphisms
  6. Gathering data on erythritol and various mysterious insects #patent
  7. Heading a lab of six undergraduates – and hopefully not sucking too hard

Given that so many of the above only really happened in the last two months, it seems like it might be a good idea to re-evaluate my yearly goals every quarter instead of every six months – so much can change so fast!

How is your 2017 going? Are you on top of your goals? What do you do to re-focus during that mid-year burn out?

Continue Reading

The Pesticide (maybe) in Your Coffee

Insecticides are a huge industry in the United States – whether we’re talking the small-scale can of Raid for your kitchen counter ants or the much larger scale agricultural market. But what if there was something already on your kitchen counter that might take care of those ants for you?

Erythritol is the main compound found in Truvia, a common artificial sweetener that many people use for baking or their morning Cup o’ Joe. Erythritol is a non-nutritive sugar alcohol – so while it sweetens your food, it can’t be digested by your body. The fact that it is sweet (like sucrose or other sugars) makes it attractive to insects such as Drosophila melanogaster, one species of small fruit fly that is a very common organism for scientific study. In this case, attractive can also mean deadly.

Figure 1. Drosophila melanogaster raised on food containing Truvia show decreased longevity. Truvia is red, Purevia is green, control nutritive sugars are dark blue, and other non-nutritive sugars are light blue. Graph shows percentage of living adult flies raised on food containing different nutritive and non-nutritive sweeteners over time. Note significant decrease in longevity of adult flies raised on food containing Truvia compared to other food.
Figure 1. Drosophila melanogaster raised on food containing Truvia show decreased longevity. Truvia is red, Purevia is green, control nutritive sugars are dark blue, and other non-nutritive sugars are light blue. Graph shows percentage of living adult flies raised on food containing different nutritive and non-nutritive sweeteners over time. Note significant decrease in longevity of adult flies raised on food containing Truvia compared to other food.

My lab published its first ground-breaking (what, can’t a girl brag?) paper on erythritol in PLoS One, entitled “Erythritol, a Non-Nutritive Sugar Alcohol Sweetener and the Main Component of Truvia, is a Palatable Ingested Insecticide” (Baudier et al 2014, before I arrived). As you can see on the graph to the left, flies that ate Truvia had significantly decreased longevity as compared to flies fed PureVia, Sweet ‘N Low, Sucrose, Equal, Splenda, or Corn Syrup. It’s a pretty drastic split. They also ran an experiment confirming which compound in Truvia was the killer compound (spoilers above: it’s erythritol).

Figure 6. CAFE experiments show Drosophila melanogaster actively consume erythritol over time. Upper graph shows prandial behavior of 10 individually housed flies fed 5% erythritol (red columns) and 10 individually housed flies fed 5% sucrose (blue columns) over a 6 hour period. Average intake per fly per hour is graphed for each treatment and separated by sex. Lower graph shows prandial behavior of 10 individually house flies when presented with a choice between 5% erythritol (red columns) and 5% sucrose (blue columns). Average intake per fly per hour is graphed for each treatment and is separated by sex. Note the significant increase in erythritol intake compared to sucrose intake for both sexes.
Figure 6. CAFE experiments show Drosophila melanogaster actively consume erythritol over time. Upper graph shows prandial behavior of 10 individually housed flies fed 5% erythritol (red columns) and 10 individually housed flies fed 5% sucrose (blue columns) over a 6 hour period. Average intake per fly per hour is graphed for each treatment and separated by sex. Lower graph shows prandial behavior of 10 individually house flies when presented with a choice between 5% erythritol (red columns) and 5% sucrose (blue columns). Average intake per fly per hour is graphed for each treatment and is separated by sex. Note the significant increase in erythritol intake compared to sucrose intake for both sexes.

 

 

 

But it doesn’t matter if erythritol kills the flies if they won’t choose to eat it! So Baudier et al. ran several CAFE experiments; one gave the flies access to both sucrose and erythritol of the same concentration and measured how much of each solution the flies ate over time (bottom graph of the figure to the right). As you can see, the red bars are much higher than the blue for both sexes – the flies, when presented with a choice, ate more erythritol than sucrose. If that trend were to hold in the wild, that would be very good news – the flies would self-select to eat the pesticide over other available foods containing non-lethal sucrose!

 

 

 

 

 

 

 

 

While this paper looked at a few more things, the last piece of the puzzle I want to talk about here is the effects of higher or lower doses of erythritol on fly longevity. The graph below shows that flies fed two molar erythritol all died within 48 hours! That’s incredibly fast-acting for a pretty tame pesticide.

Figure 4. Increasing concentrations of erythritol show decreased longevity in Drosophila melanogaster. Graph shows percentage of living adult flies raised on food containing different concentrations of erythritol. Control food is 0.5 M sucrose (blue line), 2 M erythritol (red line), 1 M erythritol (orange line), 0.5 M erythritol (green line), and 0.1 M erythritol (black line) were used. Note significant decrease in longevity of adult flies as concentration of erythritol is increased.
Figure 4. Increasing concentrations of erythritol show decreased longevity in Drosophila melanogaster. Graph shows percentage of living adult flies raised on food containing different concentrations of erythritol. Control food is 0.5 M sucrose (blue line), 2 M erythritol (red line), 1 M erythritol (orange line), 0.5 M erythritol (green line), and 0.1 M erythritol (black line) were used. Note significant decrease in longevity of adult flies as concentration of erythritol is increased.

I hear you saying: “Okay, Meghan, but this is all about flies. Didn’t you promise me that I could take out ants with this stuff?” A recent study by another lab has shown that erythritol works against Solenopsis invicta – the red imported fire ant that causes so much trouble in the United States and abroad. While that probably isn’t the species of ant you have on your counter, it is a promising sign that this stuff may just work on many different groups of insects – from flies to ants, perhaps beyond.

And because erythritol is found in a sweetener meant for human consumption it has been rigorously tested by the FDA and is known to be human-safe (though if you eat a lot, and I mean a lot, of it all at once it may have a laxative effect). In other words, you can feel better about spraying this stuff onto your countertops than Raid. Compared to neurotoxins and other nasty chemical pesticides, erythritol is also thought to be more environmentally friendly too!

Continue Reading

Biopoetics: Windborne

Photo by George Wesley and Bonita Dannells entitled ‘Maple seeds – the samara’ (Attribution-NonCommercial-NoDerivs 2.0 Generic), link through photo
Photo by George Wesley and Bonita Dannells entitled ‘Maple seeds – the samara’ (Attribution-NonCommercial-NoDerivs 2.0 Generic), link through photo

A huge thank you to Crab Fat Magazine for publishing this poem; you can read it here, see the form here, or listen to me read it here.

Windborne is another poem in my sugar maple cycle; when I first began working on this poetry series and thinking about trees more deeply, I came to the conclusion that trees wouldn’t obey our seasons. So I created what I thought were important ‘seasons’ for trees: Sunleaves, Deepnight, Sapriver, Budbreak, and Windborne. Windborne occurs as the trees begin to let loose their seeds (known as samaras, or helicopters), allowing for them to be carried on the wind across the land (this is known as anemochory).

In Budbreak, adult sugar maples that are at least 22 years old begin to produce leaves and flowers; these flowers cover the entire crown of the tree and contain both male and female parts. However, within a particular flower, only one sex will be functional – even though each tree will contain both sexes of flowers. Sugar maple pollen is carried by the wind from male to female flowers, fertilizing the ovules within the female flowers that will ripen into seeds over the next sixteen or so weeks. Each double samara (two wings) generally contains one seed which is ripe and ready when it turns a nice green color. Over the next two weeks, the ripened samaras will fall – leaving a pit in their coat, called the hilum, where they were once attached to the tree. The shape of the double samara and the size of the ‘wings’ allow samaras to be carried at least 100m!

Seeds are packed with their own food source (the endosperm) to help fuel the plant embryo’s growth. The embryo has several important parts – the plumule (rudimentary shoot), a radicle root that will emerge first upon germination to reach water through the leaf litter, and the first leaves, or cotyledons. In sugar maples (dicotyledons) there are two of them, which I wrote more about here in the Biopoetics for my poem “Dicotyledons”. Seeds typically have only a year to germinate before losing viability so it’s critical they land in a welcoming, wet environment. Seeds that are carried by the wind to extremely dry areas, rocks, or other inhospitable places will likely never germinate – which is why adult trees produce so many samaras. One year in Michigan, 8.56 million samaras/acre were recorded!

Check out the link of the photo, where the photographer has provided a few more maple seed facts in the description!

Main Source:

https://www.na.fs.fed.us/spfo/pubs/silvics_manual/volume_2/acer/saccharum.htm

Continue Reading

Biopoetics: Sapriver

I’m so thankful to Five 2 One magazine for publishing this poem; you can purchase the journal here, read my poem here, or listen to it: here.

4386948294_651b3b102e_z
Photo by Duane Tate entitled ‘Trees in Winter’ (Attribution 2.0 Generic), link through photo

Sapriver is another poem in my sugar maple cycle; when I first began working on this poetry series and thinking about trees more deeply, I came to the conclusion that trees wouldn’t obey our seasons. So I created what I thought were important ‘seasons’ for trees: Sunleaves, Deepnight, Sapriver, Budbreak, and Windborne. Sapriver occurs as the ground  begins to warm and winter (Deepnight) starts to fade into spring.

In fall, trees store sugars in their roots before losing their leaves and laying dormant through the short, cold days of winter. ABA, abscisic acid, helps the tree acclimate to the cold winter temperatures and be ‘frost ready‘ (entering a period of dormancy with fallen leaves, closed stomates, and other cellular changes).

During those winter days, sunlight can warm the cells just under the bark, causing them to expand. When night comes, the bark cools and contracts faster than the cells underneath, causing a vertical seam to split the bark open as it tightens over an expanded layer of cells. This heat stress can cause significant cell death and cracks in the barks of trees, sometimes called ‘frost cracks’ or ‘radial shakes’ (though there are also other causes of these wounds). Smaller trees can even die from these wounds, as they have fewer cell layers overall. This is just one challenge faced by trees due to weather conditions.

Longer days cause snow to melt, saturating the soil, and also raises ground temperature. The daytime heating of the ground causes sap stored in the roots (created through photosynthesis by leaves the tree lost in the fall) to also heat up; the sap expands due to the heating, creating pressure inside the finite space of the roots, causing some of the sap to flow up the trunk of the tree through the xylem. At night, when everything cools, there is now negative pressure in the roots – causing water to be pulled into the roots from the environment to equalize the pressure again. This sap and water is used by the tree to begin creating buds that will eventually become flowers and leaves, a process helped along by ‘gibberelins’  – hormones that stimulate stem elongation, breaking and budding, and seed germination after periods of dormancy (in response to cold).

Continue Reading