The Evidence that Scientists Don’t Believe

Scientists are big on evidence; after all, we’ve each been trained (in our own highly specialized field) to accept nothing unless evidence shows – beyond a very high statistical cut off – that the particular thing in question is likely a real phenomena. And even then, we are trained to say that the evidence ‘supports’ that particular phenomena, not that it ‘proves’ it. All of this shows that we should have a very high threshold for skepticism, and a huge disapproval of ‘anecdata’ – that is, the ‘data’ of our personal experiences, not supported by evidence.

Scientists abhor when the general population ignores the overwhelming evidence on the safety and importance of vaccinations, the reality of human-caused climate change, or the mechanisms of evolution. But when it comes to research on education, evidence shows that scientists are the new climate-deniers (Terry McGlynn put in nicely here). In fact, even when scientists want to be better instructors, they resort to anecdata (e.g. “I saw my students become more engaged in the classroom when I switched to case studies”) and not the extensive literature that may document a similar trend (Andrews and Lemons 2015).

In my mind, it isn’t a tragedy when instructors are choosing to switch to evidence-supported, effective teaching methods based on personal experiences. This is roughly the equivalent of someone saying, “In my experience, the weather has gotten hotter every year that this coal plant has been in operation near my house – so I’m going to switch entirely to renewables.” Sure, you wish they looked at the papers showing the real evidence about climate change – but the net outcome of this scenario is uninformed, yet ultimately positive, action being taken.

But it is a tragedy when instructors are using anecdata to switch to practices that are not supported by the evidence, wasting valuable time and educational resources, and when instructors use personal experience to justify sticking with lecturing and other methods that have been shown to be ineffective at increasing student learning when compared with active learning strategies (Freeman et al 2014). It is not a tragedy for the instructors, but for the students – who are 1.5x more likely to fail when teachers use traditional lecture styles as compared to active learning.

Oftentimes, scientists are compelled to ignore the education literature because it seems ‘unscientific’ – there are too many uncontrolled elements, or the research uses qualitative or observational data instead of quantitative data (which wouldn’t fly in the peer-reviewed journals many of these scientists are publishing in). In reality, we’ve each simply gotten comfortable with the specific issues that plague our fields and methods – no biology or even physics study is perfectly controlled (though math might be able to make some claims towards perfection), yet we still recognize the validity of a statistically significant result! The goal of experimentation is never perfection – otherwise we would never be able to say anything conclusive about our world.

In regard to qualitative data, many of the first naturalists simply sat and observed their quarry – yet still came up with important, reproducible results about the natural world that later scientists relied on and replicated when better or different techniques became available. Just like in chemistry, biology, or physics, it’s the accumulated results of multiple independent and peer-reviewed education studies that should be considered as a guiding light, not any single piece of work or classroom; the strength of qualitative data grows through repeated observation, just as that of quantitative data does. And oh boy is there a large body of evidence for many active learning strategies!

An additional problem is that some ‘revolutionary’ new teaching practices that are promoted are not necessarily evidence-driven, leading to well-meaning and hard-working teachers getting duped into using unsupported teaching practices. Ever heard of ‘learning styles’ or been asked some variation of: ‘are you a visual, verbal, or kinetic learner?’ I’m guessing most of us have.

Yet there’s not much (any?) evidence out there showing that matching your ‘presentation style’ to a student’s self-reported ‘learning style’ actually increases student learning. Despite the lack of evidence (reviewed nicely by Pashler et al 2008), learning style curriculum and self-assessments are all over the educational sphere, and have invaded the ‘mainstream’ understanding of how people learn – to the point that learning styles are accepted as evidence-based, even when they are not. In fact, approaching people with the idea that learning styles are not supported by evidence is often met with shock – and denial. Sentences like ‘Well, I just know I’m a visual learner’ abound – for many of the reasons pointed out in the Pashler et al 2008 report. Tons of academic resources are being wasted as money and time are being poured into learning styles classroom work – and none of it is effective or supported by evidence.

Me, teaching as a grad student, getting ready for some active learning wisdom to be imparted.
Me, teaching as a grad student, getting ready for some active learning wisdom to be imparted.

So what are some evidence-based teaching approaches? Active learning strategies like Peer-Led-Team-Learning, Problem-Based Learning, Process-Oriented-Guided-Inquiry Learning, and more have been shown in a variety of contexts to improve student learning outcomes among other metrics (Eberlein et al 2008). Despite the fact that we’ve known about these techniques for centuries, we’re still waiting for the denial-ism to quit and for scientists to start implementing these evidence-based teaching techniques in their classrooms. In future posts, I’ll talk more about these techniques, the research behind them, how to use them, and how to start using them (yes, these are different).

It’s time to put our scientific mindset to task, stop the anecdata, and focus on the evidence: evidence based active learning is the future of STEM education.

References:

Andrews T, Lemon P (2015). It’s Personal: Biology Instructors Prioritize Personal Evidence over Empirical Evidence in Teaching Decisions. CBE – Life Sciences Education, 14, 1-18.

Eberlein T, Kampmeier J, Minderhout V, Moog R, Platt T, Varma-Nelson P, White H (2008). Pedagogies of Engagement in Science: Comparison of PBL, POGIL, and PLTL. Biochemistry and Molecular Biology Education, 36, 262-73.

Freeman S, Eddy SL, McDonough M, Smith MK, Okoroafor N, Jordt H, Wenderoth MP (2014). Active learning increases student performance in science, engineering, and mathematics. PNAS, 111, 8410-5.

Pashler H, McDaniel M, Rohrer D, Bjork R (2008). Learning Styles: Concepts and Evidence. Pyschological Science in the Public Interest, 9, 105-19.

You may also like

Leave a Reply

Your email address will not be published. Required fields are marked *